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Dear Dr. Rood:

The purpose of this letter is to transmit the seventh quarterly report for ONR
Grant N00014-91-J-1271, "An Experimental Study of Plunging Liquid Jet Induced
Air Carryunder and Dispersion" (Lahey & Drew - CoPI).

This report period has been primarily concerned with the development of a two-
fluid Computational Fluid Dynamics (CFD) model for a free two-phase jet. This
model has been inplemented into PHOENICS and evaluated on a RISC/6000 work
station and the CRAY YMIP-8 at Stennis Space Center.

We first present a state-of-the-art two-fluid model for air/water flows, which
consists of the phasic three-dimensional conservation equations of mass and
momentum. The associated closure conditions will also be discussed, along with
some general constraints, followed by specific constitutive relations for low void
fraction bubbly two-phase flows. Finally, the results of the numerical evaluation
of a planar plunging liquid jet will be presented.

For isothermal, incompressible air/water flows the appropriate ensemble
averaged conservation equations for a free two-phase jet are: b1o .i.A• X
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(akPkytk) + + Ve(akPkykVk) = V [ak( + e)]

+ akPk- + Mki (k= g or 1) (2)

Interfadal Jum= Conditions

g= - Mi + V [Og(a + (Pgi -pi)I (3)

where,

=k Pk="P + ; Pgi Pi =2a/Rb

and the surface stress tensor is

==S P, VS [Ysr.•r bs (-r*yr)-I']

which a sphere,

^ 9 3

In these conservation equations, cxk is the volume fraction corresponding to
phase-k,* p is density, v is velocity, T is the total stress tensor, g is gravity and Mki
is the interfacial force (per unit volume).

Because of the averaging process the system of equations have more unknowns
than equations. In order to have a closed mathematical system one must
constitute the interfacial momentum transfers and the Reynolds stresses.

One simple way of constituting the interfacial momentum transfers is by For
assuming that the only source of interfacial momentum interchange is drag. The I
algebraic drag law which is normally used is:

d 0

D 3 Pt Ion
Mi =4CD Db (v vr Ir -(4ar
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where Db is the mean bubble diameter and CD is the drag coefficient. A well

known drag correlation due to Wallis is:

6.3 Db IrlCD -- 0.385 ; Reb- *0t ' r = _U-g- Rt

Rb

The phasic momentum equations of the resultant two-fluid model are given by:

(agPgyg) + VDCgPgygyg) g V as] + V9 [a(g ~ )
CD

- agVp + agp D P1 A'" v1r I (5a)

SRe
Y (c•zPlvy) + V ((cipevyl) = VI [Lt(_BI) + T(SI)]

-OlVPe + olPl 9 + CDP A' yr v I (5b)

where T(BI) is the stress tensor corresponding to bubble-induced pseudo-

turbulence and TSI) is the stress tensor corresponding to shear-induced
turbulence. The later stress tensor can be computed using the k-E model.

A clear drawback of this simple, but popular, model is that many other
mechanisms of momentum interchange are not taken into account. For
example, the so-called virtual mass force, the lateral lift force, the interfacial
pressure distributions and the turbulent dispersion terms are all missing.
Indeed, it is now well known that it is necessary to use a model that takes into
account these mechanisms.

A more complete two-fluid model can be derived using "cell model" ensemble
average techniques. This model is rigorous for a dilute dispersion of spherical
bubbles in an inviscid flow with weak void and velocity gradients. The resulting
phasic momentum equations are:

a R :• e)]
S(agpgxg) + V 0 (ctgpgygyg) = V 0 [ag] + Veag (g+1)
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CmPe-r +Qg V yMg, (C 1 2Cp) CgptLr 6'VyT

ý t + +gV* -1
-C~gp4r [x +Vj(V Yr bspi (Yx 0 r) Vag

CD-asP (Y~r * Vag) Yxr-CLPtXgY.X×V× X3+agpgg---8--pt Ai"y.1yxI yx (6a)

* (epeyt) [(Re Re)]

- a• Vpt - CpptI Yr1 2 Vat + CvmCugpeavm + CrotcgPt YLr X V X×Xg

+ mPYxr + a+g V 0 g + C1 cgPYrl VT

"+ C2agpyr" [Vyr + Vy4w + (V Yr4)_J

"+ bs Pt (-r * 1r) Vcg + as Pt (yr VCCg) Yr + CL Ptag Yr X V X Y-t

+tX P1 g + --•-p y 'Yr (6b)

where, the virtual mass acceleration is,

•m +_gV -Av-tVt Dt -Dt

and, for spherical noninteracting bubbles:

1 9 9at = - •,as = - 20' as =- 9'

3 3 3

In order to numerically evaluate this two-fluid model we need the appropriate
boundary conditions. There is no general theory for the type of boundary and
initial conditions that a system of partial differential equations requires in order
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to have a unique solution. Nevertheless, for a hyperbolic system Cauchy
conditions are recommended.

Most researchers in the past have evaluated two-phase models as initial value
problems using parabolic numerical techniques, thus it was not necessary to
specify boundary conditions at the outlet of the integration domain. However,
when this approach is used, one has to specify the pressure distribution in the
integration domain. For many cases a hydrostatic pressure distribution is a good
approximation. Unfortunately, when a parabolic scheme is used, one cannot
compute flow recirculation. In particular, one cannot compute gas flow reversal,
an important feature in the two-phase jets which are of interest in this study.

In this work we have used an elliptic (ie, boundary value) calculational scheme.
That is, we have numerically evaluated the full two-fluid model and the
associated k-E model using appropriate boundary conditions at the inlet and the
exit. This complicates the evaluation procedure, however only in this way can we
obtain a prediction of gas flow reversal.

Figure-1 shows the integration domain. We have refined the grid near the
symmetry plane of the planar jet because the gradients are the steepest there. In
the axial (i.e., z) direction we have increasingly larger cells because of the
decreasing gradients. The boundary conditions which have been used are:

h h

INLET (z = 0, _ 1• < y< )

Gas mass flux = a pg V (7a)

Liquid mass flux = (1 - x) Pt V (Th)

Uty =0 (7c)

Ugy =0 (7d)

Utz= V (7e)

Ug, = V (7f)

Kinetic energy k =3 ,( ) 2(7g)2 3z

0.1643(u'z)3 3
Dissipation = = (0.09 h) =1.8256 (u' )/h (7h)

h1)
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OUTLET (z = Z)

P = Pg cos 0 Z (8a)

0z =z - 0 (8b)

aUlz aUgzuz = 0 az = 0 (8c)

_E = 0 az = 0 (8di

It should be noted that the boundary conditions associated with the mass balances
are only required at the inlet. This can be understood based on the fact that the
mass balance is a first order partial differential equation. Moreover, given the
velocity field, the equation may be solved for the void fraction along the model's
characteristics. With the void fraction given at the inlet, the void fraction field can
be readily evaluated.

Because the velocity fields, as well as the turbulent kinetic energy and the
dissipation, are not well known at the outlet, we have specified natural boundary
conditions. That is, we set the gradients of these variables in the flow direction
equal to zero. In our case the outlet boundary conditions were found to have a
negligible effect except for the last two rows of cells.

The numerical results presented herein correspond to a planar liquid jet
impacting a liquid pool using the two-fluid model given by Eqs. (1) and (5). The
liquid jet velocity at the location of impact was ut, = 5 m/s, and a constant bubble
diameter of 2 mm was assumed. The initial velocity profile was uniform. The jet
width, h, was 4.03 mm, and the void fraction at the location of impact was
assumed to be uniform and equal to 5%. The inlet turbulent intensity was 3% and
the inlet turbulent dissipation was computed using Eq. (7h). The inclination
angle of the jet was measured with respect to the vertical plane (i.e. 0 = 0 degrees
means a vertical planar jet). The integration domain had an extent of y = 0.2 m in
the lateral direction and z = 0.25 m in the axial direction. The k-s model for
turbulence used the constant values suggested by Launder & Spalding for single-
phase flow. We have presented results corresponding to a vertical liquid jet (0 = 0
degrees) unless otherwise stated.

Figure-2 shows the gas and liquid axial velocities as a function of lateral direction
for z = 0.225 m (note, y = 0.1 m is the jet's plane of symmetry). Both velocity
profiles show a Gaussian-like profile. We see that, due to buoyancy, the liquid
velocity is always higher than the gas velocity, a well-known characteristic of
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downflows. The relative velocity was approximately 0.3 m/s which is very close to
the terminal rise velocity of the bubbles.

Figure-3 depicts the axial liquid velocity as a function of lateral position for
different axial positions. The curve labeled, z = 0.00125 m, is right under the
impacting location and one can see an almost uniform velocity profile (u, =_ 5 m/s).
As we move down in the pool the jet is dispersed due to momentum interchange
with the surrounding fluid. The curve z = 0.225 m is the same one shown in
Figure 2.

Figure-4 shows the turbulent kinetic energy, k, as a function of lateral position for
z = 0.225 m. The curve shows the characteristic relative minimum in k at the
symmetry plane.

In Figure-5 the liquid velocity field has been plotted as a function of axial and
lateral position. The length of the arrows is proportional to the liquid velocity at
the location of the arrow's tail. The arrow's tail is located at the center of the
computational cell. The arrow scale is in the lower left corner (uzt = 2 m/s). The

spreading of the jet can be easily seen in this plot as noted previously. Near the
location of jet impact (z = 0) the axial velocity is almost uniform. Because of the
momentum interchange between the jet and the surrounding fluid, liquid is
entrained in the lateral, y, direction. Finally, one may note the formation of two
weak recirculation zones near the y-boundaries for large z.

Figure-6 shows a contour plot of the axial liquid velocity. The lines connect
positions with the same axial velocity (equivelocity lines). The outer curve
corresponds to uz1 = 0.25 m/s, and the difference between successive lines is 0.25

m/s.

Figure-7 shows a contour plot of the void fraction for one half of the jet. The outer
line connects points with the void fraction a = 0.25%. The divergent lines show
that, when only drag is used for closure, the void fraction field spreads only
slightly as z increases.

Figure-8 shows a vector plot of the liquid velocity field for an inclined planar jet
(6 = 45'). We rotate the integration domain 450 in order to have the plane y = 0
aligned with the jet orientation. This was done for computer time economy
purposes and in order to minimize numerical diffusion. It can be seen that, as
expected, the gas drags the liquid away from the centerplane.

Figure-9 shows a vector plot of the gas velocity field for an inclined planar jet
(0 = 45'). Of particular interest are the results shown in the upper right corner,
the gas velocity (weighted with the void fraction) at the y-boundary. This shows a
reversal of the gas flow rate.
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The calculations presented herein correspond to a simple two-fluid model. The
calculations corresponding to the full two-fluid model (ie, using Eqs. (7)) are
currently under way. These predictions, and the plunging liquid jet data using a
planar nozzle, are expected to be available during the next report period.

If you have any questions concerning this report, please contact me or Professor
Drew at your convenience [Lahey: (518) 276-8579; Drew: (518) 276-6903].

Sincerely yours,

Dr. R.T. Lahey, Jr.
The Edward E. Hood, Jr. Professor of Engineering

RTL/ev

cc: Administrative Grants Officer
Director, Naval Research Laboratory
Defense Technical Information Center
D.A. Drew (RPI)
F. Bonetta (RPI)
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